Optimization theories for saline environments

Valeria Volpe Gabriel Katul Marco Marani

Summer School on Biogeodynamics and Earth System Sciences (BESS) Venice, 18/06/2010

Motivations

- It has long been suggested that, at the leaf scale, natural selection may have operated to provide increasingly efficient means of controlling the tradeoffs between water vapor loss and carbon gains.
- How does **salinity** modify this picture?

Photosynthesis - Transpiration

Structural modifications

	NaCl (molal)						
	0.0	0.05	0.1	0.2	0.3	0.4	
Mesophyll thickness (µm)							
Bean	150	165	260				
Cotton	209	256	329	373	422		
Atriplex	210		210	212	260	340	

Optimization model (no mesophyll limitations)

Define the instantaneous:

$$\begin{aligned} Carbon Gain &= f_c \\ Water Loss &= f_e \approx a g_s D \end{aligned}$$

John Dalton

Multiplier

OBJECTIVE FUNCTION

$$f(g_s) = f_c(g_s) - \lambda f_e(g_s)$$

Leaves are autonomous and attempt to maximize their own carbon gain for a given amount of water loss.

Basic equations:

	Without Salinity	With Salinity		
Transport Equation:	$f_c = g_s(C_a - C_i)$	$f_c = g_{eff} (c_a - c_c);$	$g_{eff} =$	$\frac{g_c g_m}{g_c + g_m}$
Biochemical Demand:	$f_c = \frac{\alpha_1 \left(C_i - \Gamma^* \right)}{C_i + \alpha_2}$	C _i	→ C _c	
Optimality	V Rule: $\frac{\partial (f_c(g_s) - f_s)}{\partial g_s}$	$\frac{\lambda f_e(g_s))}{2} = 0$		

Three equations with 4 unknowns (f_c , C_c , g_s , g_m) – mathematically unclosed

Optimization models (linear form) With mesophyll conductance

Upon differentiating f(g_c) and setting it to zero:

$$f_{c} = \frac{a_{1}g_{m}(c_{a} - c_{p})}{a_{1} + g_{m}(a_{2} + sc_{a})} \left[1 - \sqrt{\frac{a\lambda D}{c_{a} - c_{p}}} \right]$$
$$g_{c} = \frac{a_{1}g_{m}}{\left(a_{1} + g_{m}(a_{2} + sc_{a})\right)} \left(-1 + \sqrt{\frac{c_{a} - c_{p}}{a\lambda D}} \right)$$

$$\frac{c_i}{c_a} = \frac{c_p}{c_a} + \frac{(c_a - c_p)}{c_a} \left[1 - \sqrt{\frac{(a\lambda D)}{(c_a - c_p)}} \right]$$

Preliminary Results (1)

Olives (Loreto et al., 2003)

Preliminary Results (2)

$$\frac{c_i}{c_a} = \frac{c_p}{c_a} + \frac{(c_a - c_p)}{c_a} \left[1 - \sqrt{\frac{(a\lambda D)}{(c_a - c_p)}} \right]$$

Bongi and Loreto, 1989

Ball and Farquhar, 1984

Preliminary conclusions

- 2 time scales of stomata response to increasing salinity:
 - FAST t.s.: stomatal conductance
 - SLOW t.s.: mesophyll conductance
- Optimization theory consistent with datasets analyzed
- Three parameters were used to analyze salt tolerance by different species (olivesmangroves):
 - g_m: changes in all species
 - $-\lambda$: changes only for salt-intolerant species
 - a_1 : changes for the olive case

Futher work

- Short Term: literature review to assess how salinity affects the optimization theory parameters for different species
- Long Term: integrate this results with on-going work on hydrologic models of the soil-plant system to assess how climate change (e.g. CO2, VPD, T) affects plant productivity in salt environments

References

- Ball M.C. and Farquhar G.D. (1984) Photosynthetic and Stomatal Responses of Two Mangrove Species, *Aegiceras corniculatum* and *Avicennia marina*, to Long Term Salinity and Humidity Conditions, Plant Physiol. 74, 1-6
- Bongi G. and Loreto F. (1989). Gas-Exchange Properties of Salt-Stressed Olive (Olea europea L.) Leaves, Plant Physiol. 90, 1408-1416
- Geissler N., Hussin S. and Koyro H.W. (2009). Elevated atmospheric CO₂ concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of *Aster tripolium L.,* Journal of Experimental Botany, Vol. 60, No. 1, pp. 137–151, 2009
- LORETO F., CENTRITTO M. and CHARTZOULAKIS K. (2003) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress, Plant, Cell and Environment, 26, 595–601
- Katul G., Manzoni S., Palmroth S., and Oren R. (2010). A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Annals of Botany 105: 431–442.